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Abstract. We shldy the statistical properties of the spectrum of a quantum dynamical system 
whose classical counterpart has 3 mixed ph3se space smcture consisting of WO regular regions 
separated by a chaotical one. We make use of a simple symmetry of the system to separate 
the eigenstates of the time-evolution operator into WO classes in agreement with the Percival 
classification scheme. We then use a method f i ~ t l y  developed by Bohigas et a1 to evaluate the 
fractional measure of states belonging to the regular class. and tinally present the level spacing 
statistics for each class. The level spacing distribution of Stat= belonging to the irregular part of 
the spectra as well as that of the complete sei of levels corroborate the Berry-Robnik surmise. 
We further present a statistical study of the regular levels. The presence of intermediate states- 
states which belong to neither class as long as h is finite-phase spatially mixed among the set 
of regular ones, together with the small fractional measure of regular states sl~ongly affenS the 
corresponding level spacing statistics, resulting in a non-negligible deviation from the expected 
Poisson distribution. We see, however, the remarkable agreement of the irregular level spacing 
statistics as a direct confirmation of the Berry-Robnik surmise. 

1. Introduction 

For more than a decade, the study of quantum mechanical systems whose classical 
counterparts exhibit chaos has attracted much interest. One motivation for this study is 
the paradoxical fact that while the correspondence principle, as we understand it, should 
imply a quantum manifestation of classical chaos, the Schrodinger equation is linear. As 
a consequence, the time-evolution operator is unitary, and this suppresses any exponential 
divergence in the time evolution of quantum states. As a spectacular manifestation of this 
fact. timereversal invariant models show no loss of memory: reversing the time at a certain 
moment T brings us back to.the initial situation after another time interval T, while this 
would require infinite precision in a classical chaotic system. Thus a basic manifestation of 
classical chaos seems to have no place in quantum mechanics. 

On the other hand, the destruction of an integral of motion, of a quantum number, 
has striking effects on the statistical properties of quantum spectras. It is today taken as 
granted that in a classically integrable system, the levels are uncorrelated, and so have a 
Poissonian level spacing distribution [4] (a remarkable exception being the one-dimensional 
harmonic oscillator) and that in classically fully chaotic models, the level spacing distribution 
has a dramatically different shape: it obeys predictions of random matrix theory, i.e. it 
exhibits level repulsion [l]. The situation in mixed systems, where regular and chaotic 
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regions coexist in the classical phase space, is more intricated. In an old paper Percival 
[2] classified the eigenfunctions of the Schrodinger equation into two classes belonging to 
either the regular regions, where the invariant ton are not destroyed, or the chaotic one. This 
classification was based mostly on the correspondence principle and has been numerically 
confirmed a few years ago by Bohigas et al [3]. While the eigenfunctions that are mostly 
confined on classically regular regions-we will call them the regular eigenfunctions- 
tend to concentrate on invariant tori, the irregular ones tend to spread uniformly over 
the chaotic region as A -+ 0, as has been rigorously demonstrated by Shnirelman [12]. 
This picture is assumed to reflect reality in the semiclassical l i t  R = 0. Following this 
classification, Berry and Robnik postulated that the part of the spectrum that corresponds to 
regular eigenfunctions has a Poissonian level spacing distribution in opposition to the one 
corresponding to the irregular eigenstates which exhibits level repulsion [6]. This surmise 
led them to an expression for the level spacing distribution for mixed systems that has 
been observed convincingly only recently [7] for the case of the kicked rotator on a torus. 
As pointed out by Prosen and Robnik (81 and Li and Robnik [13], the reasons for this 
difficulty of observation could be that we are not far enough into the semiclassical regime. 
As long as f i  is finite, a certain number of wavefunctions belong neither to the regular nor 
to the irregular set of eigenfunctions. We may think of states making use of the Heisenberg 
uncertainty to overlap the fiontier between the regular and irregular regions of the classical 
phase space, or states located on the regular region which, due to the finiteness of the Planck 
constant, do not yet belong to the set o f  regular states. Consequently, the Berry-Robnik 
regime should be observable only in the far semiclassical Limit. We will come back to this 
point later. 

In this paper we present a spin model allowing a precise study of a mixed regime. The 
reasons for this are first that, in a special regime, an approximate simple symmetry of the 
phase space structure, namely S, + -Sz, allows the separation of regular states h m  the 
irregular ones, and secondly that the frontier between the regular and the chaotic zones is 
rather sharp, thus minimizing the number of intermediate eigenstates. This enables us to 
compute the level spacings statistics independently for the regular and irregular states. We 
interpret the fact that these statistics obey quite well the Poissonian distribution and the GOE 
respectively as a direct confirmation of the Beny-Robnik surmise. 

Ph Jacquod and J-P Amier 

We study the quantum system defined by the following Hamiltoniant: 

(1)  H qm.- .-I 2m(( l - z )Sz  2 2  -Z 'S : )+KS~AT 

and the corresponding unitary time-evolution operator: 

- z z ) g  -z*S:)T 

where 
commutation rules (E''' is the total antisymmetric tensor of third order): 

= (Sx, Sy:Sz)  = h(s,, sy,  sz) = RZ are spin operators satisfying the usual 

[Si, s,] = ih€'jtSk (3) 

0 < K < 2n, AT := xlzmS(t - nT),  [m] = energy-' time-' and 0 < z 4 1. Models of 
this kind have been extensively studied [Il l .  They represent a spin which evolves under 
the influence of a classically integrable Hamiltonian q,,, = ?((I - $)g - ~'52) during a 
time T after which the spin undergoes a rotation of angle K around the z-axis. The regime 
we consider is defined by K = 1.1, T = 5 and z2 = 4. Classically there are two regular 

t We use bold characters in the quantum case in cnntmst to gormal ones which refer to the classical and 
semiclassical cases: S refers to the quantum spin aperator while S is either a classical or a semiclassical ylin. 



Evidence for the valid@ of the Berry-Robnik surmise 4801 

zones around the nath and south poles surrounding a chaotic region which is fairly well 
symmetric under S, reflection (figure 1). In the semiclassical l i t  which corresponds to 
hs = S = constant, h = s-' -+ 0, states which are located on the chaotic region tend 
to cover it homogeneously according to Shnirelman's theorem 1121. Since this region is 
symmetric under S, reflection, the expectation value ( Y ~ I S ~ ~ P & ~ ~ )  of such a state tends 
to disappear as we approach the semiclassical limit. For small but finite f i ,  the distribution 
of (Y&,lYk), where IYk) is an eigenstate of the operator U, defined in (2), will then 
present a sharp peak around zero corresponding to the irregular states surrounded by two 
smaller bumps corresponding to regular states (figure 2). This allows us to separate easily 
the regular states from the irregular ones, the validity of this selection being confirmed by 
a numerical semiclassical argument presented in section 3 as well as an extensive study of 
the Husimi distributions of the selected states [15]. 

North Pde South Pole 

S. 

Figure 1. Orthogonal projection of ule dassical phase space on the (S,,S,) plane for the case 
T=$, K = 1.1 and z2do.S. 

The paper is organized as follows. Section 2 is devoted to a short presentation of the 
classical model. In section 3 we derive some useful semiclassical quantities such as the 
density of states and the expression for the action. This will allow us to estimate the number 
of regular states, and give a check of OUT selection criterion. In section 4 we present the. 
quantum mechanical model as well as our numerical results for a spin magnitude s = 500. 
All of them were obtained using direct diagonalization techniques. Conclusions and further 
remarks are given in section 5. 

2. classical model 

The unperturbed classical Hamiltonian 

H: := $m((l - zz)S: - z2S2 X I  (4) 

has two degrees of freedom and is 9 integral of motion. The trajectories are confined 
to the intersections of the sphere IS1 = S with the cones of constant energy E = 
?((I - 22)s: - 2s;). The perturbation 

HA := KS,A, (5) 
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, I  
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Figure 2. Histogram of the expectation value of S, taken over the eigenstaes of the unitary 
time evolution operator defined in (2). 

corresponds to a rotation of angle K around the z-axis performed at time intervals T .  
Its addition leads to the destruction of the energy surfaces, and allows more and more 
trajectories to wander chaotically on the sphere of constant spin magnitude as U and T 
grow. Expanding H: up to the first order in SS, := S - S, near the poles S, = &&we 
get a one-dimensional harmonic oscillator of period T = 2A5. In particular we have 
8Sz = O(SSt): in this approximation SS, is an integral of motion and is furthermore 
conserved by the perturbation HA too. It is thus conceivable that the invariant torii near the 
poles will offer more resistance to the perturbation than those located away from them. We 
use this property to find a regime in which there are two regular islands around the poles 
approximately related by the operation S, + -S, and separated by a chaotic region. This 
we achieved by setting K = 1.1, T = 3, z2 = 0.5 (figure 1). The regular islands occupy 
in a good approximation the region 0.Z2S2 Q E Q E,, = 0.25S2. 

3. Semiclassical approach 

We compute the Green function for a trajectory of positive energy and the density of states 
for the unperturbed case T = 5, z2 = 0.5. We follow the lines drawn in [9]. We first 
write the unperturbed Hamiltonian in canonical variables (Sz, 4) for the chosen regime: 

(6) 
The action integral for a trajectory of energy E starting at & and ending at q5 reads (3 = A?, 
e = T ) .  

HO = :m($(l+ cosz($)) - 32cos2(4)) 

E .  
h m  

where we have set @ = q5o+(q5-q50) mod 2n, and np is the number of complete revolutions 
accomplished between & and q5 (q5 = 2rmg + &). The sum runs over classical orbits @ 
of constant energy. This leads us to the expression for the corresponding Green function: 

G(h,d.e)= - -  CJldetDl,g(h7q5)lexp - zip 
A D  
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with 

-4 
mZJ(4e + sZcos2(@0))(1+ cos2(@0))(4e + s2cosz(@))(1+ cosz(@)) 

(9) 

this result being obtained by partial differentiations of (7). Since this latter value never 
changes sign, the Maslov index 1~ vanishes and so the divergence of the Green function 
leads to the following semiclassical quantization condition: 

- - 

for any integer 0 < M < s. We have then for the averaged density of states ( N  is the 
number of states): 

The last equation states, in particular, that the averaged density of states is proportional 
to the classical orbit period. Figure 3 shows the agreement of this semiclassical result with 
the numerically obtained density of states for the unperturbed quantum model at s = 1000. 
Using (1 1) we estimate the number of states occupying the regular region of figure 1: 

O.P? 
Nreg  ti 1 p(e) de c 9 (2s + 1) (12) 

The number of states occupying this region in absence of perturbation is 9 times the total 
number of states. This gives us a first approximation for the number of regular states we 
must select. A better approximation in presence of perturbation is given using a method 
developed by Bohigas er U! [31. We must evaluate the number NEg of trajectories that 
satisfy the condition: 

0.22r2 

for some integers M and P, while it nearly closes on itself after the Pth kick, i.e. 
sz(@i) x s,(@i). 4,: is the angle between the x and y components of the spin just 
before the ith kick while @: refers to the same angle right after this kick. 

This condition means that the action integral must still be an integer multiple of 2 T, 
and that, simultaneously, the orbit must be closed. ?his condition has meaning only on 
regular regions were the invariant torii are not destroyed, so that the integrals make sense. 
We transform this condition and compute the number of trajectories satisfying 



4804 Ph Jacqwd and J-P Amiet 

0.02 L 

Figum 3. Density of sfates for the unperrurbed Hamiltonian according to (1 1) (full curve) as 
compared 10 numerically obtained data for the case s=lWO (squaces). 

for integers M and P ,  and P sufficiently large. With this we replace two conditions by 
only one numerically more tractable condition. Since OUT task is to evaluate the number of 
regular semiclassical levels, and not to determine them precisely, we believe that condition 
(14) is sufficient. The number of regular states we numerically estimated with (14) is 5014 
for s = 500, i.e. slightly larger than that estimated with (12). In the next section, we will 
consider this estimated number of regular states as a check of the validity of OUT selection 
criterion. 

4. Quantum model 

In this section we study the statistical properties of the spectrum of the quantum 
Hamiltonian ( 1 )  for integer spin magnitude. Since the perturbation term is time-dependent, 
the energy is no longer a good quantum number, and we are led to define quasi-energies and 
quasi-energy eigenstates. The Schradinger equation leads to the following time evolution 
from right after a kick to right after the next one: 

(15) Y(T+) = u T ~ ( o + )  = exp ( I  - -K& ) exp (I: --H$,T ) Y(o+). 

Quasi-energies ?. and quasi-energy eigenstates Yk are then defined by 

UT*, = exp(-i?.)Yk. (16) 

nlP) = I -!4 (17) 
@IF) = (--l).-%). (18) 

Since UT is unitary, the A's are real and defined modulo 2 II. We introduce two parities: 
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We can express the timereversal operator T in term of these two parity operators: 

4805 

no QIp) = TIP) = (-l)s-pl - p.). (19) 
In the integer spin case the eigenstates I@) of U:! := exp(-iH&T) satisfy the conditions: 

So €f& and are, in particular, time reversible. The perturbation breaks the 11-parity 
but leaves the @-parity unbrokent. We will concentrate on the study of even states, i.e. 
those states satisfying 

@I*) = I@). (22) 
However, partial results obtained for the odd set of states corroborate the results presented 
here. The key point is now to find a clear quantum manifestation of the approximate 
symmetry S, + -S, of the classical phase space structure. A practical solution is given by 
Shnirelman's theorem which states that in the semiclassical limit, the quantum states that 
are confined on the classically chaotic region of the phase space tend to cover it uniformly. 
To get an insight in this statement we use the following resolution of unity [14] 

where we introduced coherent states of the spin SU(2) group: 

These are states that are centred on the point (0, @) of the sphere and which minimalize 
the quantum uncertainty. 6' is defined by S, = Scos(6'). Using (22). the symmetry of the 
chaotical region and Shnirelman's theorem [12]: 

on the regular region 
(ychwsle' @) - on the chaotic region 

it is then easy to show that 

(*cIIChwDSI%l*dWos) 0 (25) 
in the semiclassical limit. This translates into figure 2 where we plotted an histogram of 
the expectation value of sL taken over quasi-energy eigenfunctions for s= 500, IC = 1.1, 
z2 = 0.5, and m = 1. The central peak clearly reflects our reasoning, while the two 
smaller bumps surrounding it are mainly due to the regular states that are confined to the 
classical stability islands. The gap in-between is a consequence of the uniform distribution 
of irregular states. It is remarkable that this gap overlaps the classical frontier between 
regular and chaotic region. 

We used this property to part the irregular states from the regular ones and then study 
separately the statistical properties of the spectrums of each class of states. We believe this 
criterion is justified since the fluctuations 

As, = J(s:) - (SA' (26) 

t In the half-integer spin case, eigenstates of fhe unperhlrbed timeevolution operator are eigenstates of the 8- 
parity only. The latter is lefi unbroken by fhe permrbation we consider. 
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of regular states is much smaller than the ‘Shnirelman gap’ appearing in the histogram of 
figure 2 between the huge central peak and the smaller bumps. As a consequence only 
very few regular levels will be selected with the set of irregular ones, while maybe the 
more irregular will be counted with the regular ones. Moreover, the fact that the number of 
selected regular states is in complete agreement with the numerical semiclassical evaluation 
given by (14) confirms the relevance of this selection criterion. 

We now turn our attention to the study of the spectral properties of the time-evolution 
operator (16). Due to the @symmetry (18), UT belongs to the circular orthogonal 
ensemble, and not to the circular unitary ensemble as would be expected from the fact 
that the perturbation breaks the timereversal symmetry. This situation is similar to the one 
encountered by Berry and Robnik in certain Aharonov-Bohm billiards [SI, or by Delande 
and Gay [IO] in the hydrogen atom in a magnetic field where the system violates the time- 
reversal symmeby, but possesses an invariance under a combination of the timereversal 
and another symmetry, in our case the II-symmehy. We thus expect a linear repulsion for 
the part of the spectrum belonging to the irregular states. 

Ph Jacquod and J-P Amiet 

0.9 I 

““i 0.7 

1.5 2 2.5 3 3.5 4 
Spacings 

Figure 4. Level spacing distribution for 4233 irregular level spacings obtained through direct 
diagonalization of ten evolution matrices in the parameter range T = 2 and 1.05 < K < 1.15. 

The results of our study for a spin magnitude s = 500 are plotted in figures 4 
to 9. Figure 4 shows a plot of the level spacings statistics for 4233 irregular level 
spacings computed by .diagonalizing ten different evolution matrices for T = and 
1.05 < K < 1.15. The full curve is the predicted Wigner distribution. The agreement 
is excellent. In figure 5 we plotted the corresponding cumulative level spacings distribution 
defined in term of the level spacings distribution+ Pu by 

t We have used & for the level spacings to avoid confusion with Ihe spm magnitude, 
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0 0.5 1 1.5 2 2.5 3 3.5 4 
spacings 

Figure 5. Cumulative level spacing dishibutioo for Lhe same case as figure 4. Inset: regions of 
small deviation relatively to the Wiper distribution. 

Also shown are the Poisson and the Wigner distributions. As shown in the inset, small 
deviations from the Wigner distribution appear only around spacings ~ 2 ,  but have no 
significance to our opinion. 

Figures 6 and 7 show the level spacings and the cumulative level spacing distribution 
for 572 regular levels taken from 20 different evolution matrices for T = and 
1.05 < K < 1.15. The difficulty here is the relatively small number of regular states 
(W 25). Accordingly, only few intermediate or irregular states can have relatively large 
effects on the statistics. In a convenient basis, UT can be represented by the following 
matrix: 

R = Ri8i,j is a diagonal N,, x N,, matrix which corresponds to the Nreg regular states, 
C = C& is a diagonal Nebaos x Ncbaos matrix which corresponds to the Ncbo,,, irregular 
states, and K = O@) couples the two subspaces as long as A is finite. In our picture K 
disappears in the semiclassical limit, and the R; and C; satisfy a Poissonian statistics and 
a GOE statistics respectively. It would be a hopeless task to try to determine K for finite 
A.  The important point is to recognize that as long as A is finite but small enough, K 
couples only few regular states with irregular ones, this fact resulting in a deviation from 
the Bey-Robnik surmise. This deviation is then naturally much more important for the 
regular part of the spectrum, since it contains much fewer levels than the irregular part. We 
believe that this is the reason for the deviation of the statistics of the set of levels we have 
selected~as regular from the Poissonian predicted behaviour. We must recall that our whole 
reasoning is based on the assumption of two classically homogeneous stability islands. In 
such a case, semiclassical wavefunctions would mimic classical orbits and would therefore 
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0.9 

0.8 

Poisson DisUibuUon - 
- 
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Fylre 6. Level spacing distribution for a set of 472 regular level spacings obtained through 
direct diagonalization of tweng evolution nutrices in the parameter range T = 3 and 
1.095 < K < 1.105. The full curve is the predicted Poisson distribution. 

mgum 7. Cumdative level spacing distribution for the same levels as figure 6 compared m the 
Poisson distribution. 

fit together as concen~c  circles. The presence of hyperbolic fixed points or canton may 
change this picture, possibly turning regular states into intermediate ones as long as h is 
finite. The semiclassical wavefunctions overlap and thus interact in certain regions, and th is ,  
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in the Pechukas picture 111, modifies very sensibly the equations of motions governing the 
evolution of the quasi-energies ,I as II or T is modified, resulting in the appearance of level 
repulsion. So some intermediate states are phase spatially mixed among the set of states we 
have selected as regular and consequently modify the corresponding statistics. Their effect 
is furthermore enhanced by the small ratio of regular levels. A current investigation of 
the Husimi densities of the selected regular states corroborates this reasoning [U]. Finally 
we show in figures 8 and 9 level spacings and cumulative level spacings statistics for the 
complete set of levels. We compare our results with the Berry-Robnik prediction for a 
fractional measure of regular states as approximated by (12). The agreement is amazing, 
and corroborates OUT picture. The X2-test for both graphs ( x 2  = 25, i.e. half the number of 
boxes for figure 8, and xz = 1480, i.e. 3.3 times less than the number of levels for figure 9) 
gives full statistical significance to these last graphs. We see them as a good evidence for 
the validity of the Berry-Robnik surmise in OUT model. 

6 

D 

0.2 

0.1 

0 0.5 

\ 

1 1.5 2 2.5 3 8 5  
Spacings 

Figure 8. Level spacing distribution for a set of 5000 regular and irregular level spacings 
obtained through direct d i a g o M o n  of ten evolution matrices in the parameter range T = 9 
and 1.095 C Y < 1.105. The full curve is the predicted Beny-Rob& distribution with fractional 
measure of regular states pk = 0.08. x 2  = 2.5 is half the number of boxes. 

5. Conclusion 

We have studied the statistical properties of a quantum spin model whose classical 
counterpart exhibits a mixed phase space configuration. Due to a simple approximate 
symmetry, whose effect on the quantum system is drastically enhanced by Shnirelman’s 
theorem, we were able to separate the irregular from the regular levels, thereby confirming 
implicitly the validity of the Percival classification. We then performed a separated statistical 
study of these levels. The results confirm the Berry-Robnik surmise: while the irregular set 
of quasi-energies exhibits a clear Wigner-like shape, the regular part of the spectrum has a 
clearly different shape, though its spacings distribution does not follow strictly a Poissonian 
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Figure 9. Cumulative level spacing distribution for the same levels as figure 8 compared to 
the Poissonian and the Berry-Robnik predicted distribution. Inset: same Curve ampared to the 
WiPlgner distribution, x 2  = 1480 is 3.3 times less than the number of levels. 

law. This deviation is interpreted as the presence of both irregular and intermediate states 
among the selected regular ones, their effect being enhanced by the relatively small number 
of the latter. Nevertheless, due to the small number of regular states we believe that the 
irregular statistics is much more significant, and see our results as a good confirmation of 
the validity of the Berry-Robnik surmise in our model. 
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